

CIS 419/519 Recitation

Chang Liu Nov 11 2020

- VC Dimension
- SVM
- Adaboost

Part I: VC Dimension

Definitions

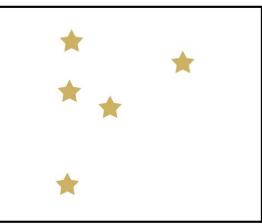
- We say that a set S of examples is shattered by a set of functions H if for every partition of the examples in S into positive and negative examples there is a function in H that gives exactly these labels to the examples
- The VC dimension of hypothesis space H over instance space X is the size of the largest finite subset of X that is shattered by H.

Shatter? Size of largest finite subset of X?

Walkthrough Example

Setting:

- We have 5 data points scatter randomly in a 2D space
- We propose a linear separator, in Hypothesis Space (H)
- Objective: Find VC(H)



We will use a different strategy:

- 1. Guess the VC dimension (in this case, we guess 3)
- 2. Find a set of size 3 that is shattered by H
- 3. Show that no set of size 4 is shattered by H

This is enough to show that the biggest set shattered by H has size 3

Why we want it?

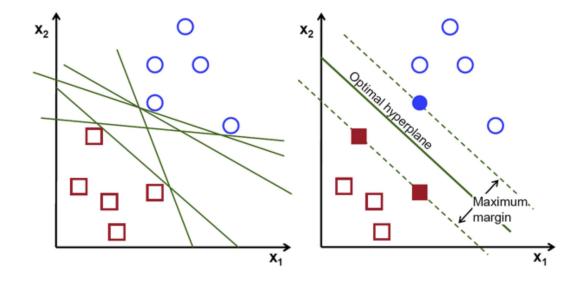
 Help us to figure out how expressive a Hypothesis Space is, especially for |H| = infinity

- Using VC(H) as a measure of expressiveness, we can get an Occam algorithm for infinite hypothesis spaces.
- Given a sample D of m examples, find some $h \in H$ that is consistent with all m examples
- If $m > \frac{1}{\varepsilon} \{8VC(H)\log\frac{13}{\varepsilon} + 4\log\left(\frac{2}{\delta}\right)\}$
- Then with probability at least (1δ) , h has error less than ε . (that is, if m is polynomial we have a PAC learning algorithm; to be efficient, we need to produce the hypothesis h efficiently.

Part 2: SVM

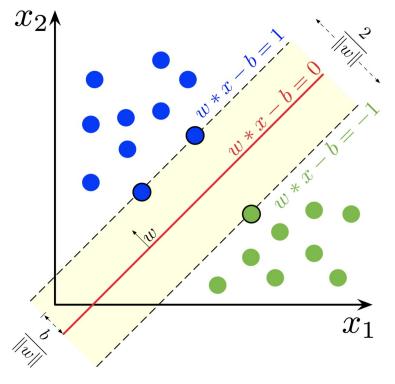
What is Support Vector Machine?

- Finding the separator that maximize the margin of 2 sets of data



😽 Penn Engineering

Demo: <u>https://jgreitemann.github.io/svm-demo</u>

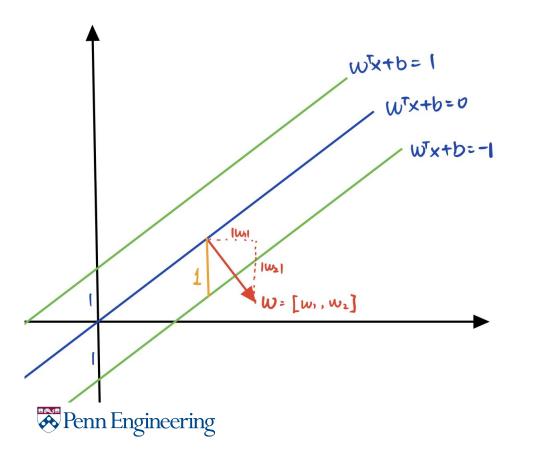


$$\min_{\boldsymbol{w}, b} \quad \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}$$

s.t $y_i (\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1, \forall (\boldsymbol{x}_i, y_i) \in S$

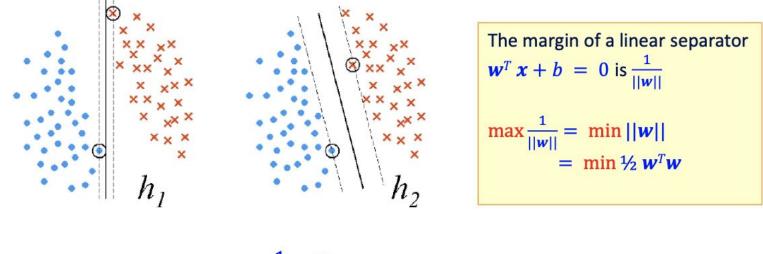
- Why Margin = I/||w||?
- Where does it come from?

Margin-Geometry Perspective



11

Hard SVM



$$\min_{\boldsymbol{w}, b} \quad \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}$$

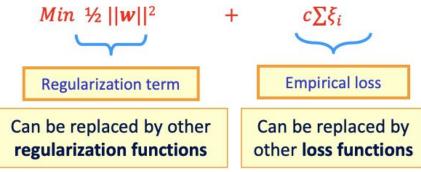
s.t $y_i (\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1, \forall (\boldsymbol{x}_i, y_i) \in S$

Soft SVM

• The problem we solved is:

 $Min \frac{1}{2} ||\mathbf{w}||^2 + c \sum \xi_i$

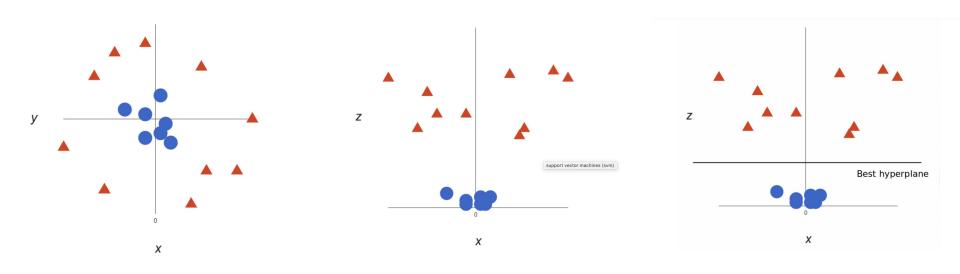
- Where $\xi_i > 0$ is called a slack variable, and is defined by:
 - $\xi_i = \max(0, 1 y_i \boldsymbol{w}^T \boldsymbol{x}_i)$
 - Equivalently, we can say that: $y_i w^T x_i \ge 1 \xi_i; \xi_i \ge 0$
- And this can be written as:



- General Form of a learning algorithm:
 - Minimize empirical loss, and Regularize (to avoid over fitting)
 - Theoretically motivated improvement over the original algorithm we've seen at the beginning of the semester.

Penn Engineering

Nonlinear SVM & Kernels

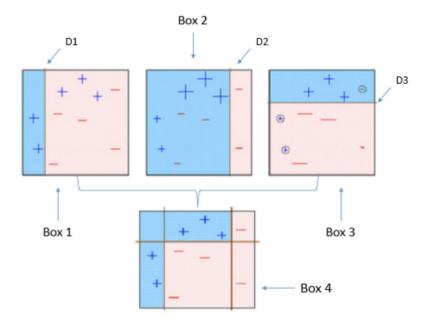


Part 3: Adaboost

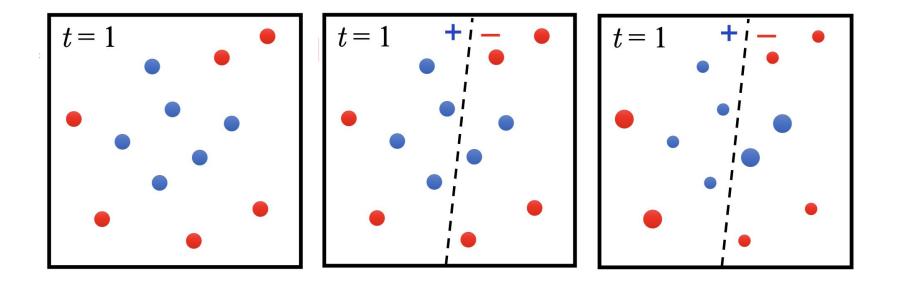
More Intuition

What is Adaboost?

- A predictors which trains sequentially, each trying to correct its predecessor.
- Method: set weights to both classifiers and data points in a way that forces classifiers to concentrate on observations that are difficult to correctly classify.
- Helps combine multiple "weak classifiers" into a single "strong classifier"



Adaboost with DT Stump



copyright@2020 Eric Eaton

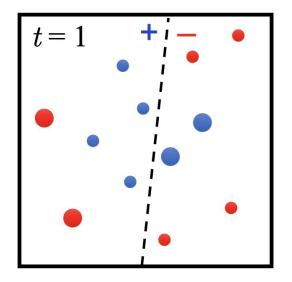
- Constructing D_t on $\{1, \dots m\}$:
 - $D_1(i) = 1/m$
 - Given D_t and h_t :

$$D_{t+1} = D_t(i)/z_t \times e^{-\alpha_t} \quad \text{if } y_i = h_t(x_i)$$

$$D_t(i)/z_t \times e^{+\alpha_t} \quad \text{if } y_i \neq h_t(x_i)$$

$$= \frac{D_t(i)}{z_t} \times \exp(-\alpha_t y_i h_t(x_i))$$
where α = permetization constant

where z_t = normalization constant and $\alpha_t = \frac{1}{2} \ln\{(1 - \varepsilon_t)/\varepsilon_t\}$



• Final hypothesis: $H_{final}(\mathbf{x}) = sign(\sum_t \alpha_t h_t(\mathbf{x}))$

